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Introduction 
 
Background 
 
 Extreme precipitation has important implications for urban and rural development, public 
infrastructure, watershed management, agriculture, and human health. According to the National 
Weather Service (NWS) Hydrologic Information Center, non-storm surge flooding causes an 
estimated $7.96 billion in damage (adjusted to 2014 inflation) and 82 fatalities each year in the 
United States alone. Historical climate records indicate that the northeastern U.S. has 
experienced significant increases in extreme precipitation since the mid-to-late twentieth century. 
Upward trends in both the frequency and magnitude of extreme precipitation have been 
documented by numerous studies (Kunkel et al. 1999; Kunkel 2003; DeGaetano 2009; Karl et al. 
2009; Heineman 2012; Kunkel et al. 2013). Moreover, the most recent assessment report from 
the Intergovernmental Panel on Climate Change (IPCC 2014) suggests that the frequency and 
magnitude of extreme precipitation in this region are expected to continue to increase throughout 
the twenty-first century. Such changes will likely exacerbate the societal impacts of extreme 
precipitation in the future. 
 
Objectives 
 

In consideration of the issues highlighted above, the Northeast Regional Climate Center 
(NRCC) has partnered with the New York State Energy Research and Development Authority 
(NYSERDA) to compare various methods of downscaling global climate model (GCM) output 
and create extreme precipitation projections for New York State. These projections will 
ultimately be incorporated into climate change adaptation planning. Primary objectives of this 
research include: 1) evaluation of downscaling method–climate model combinations to assess 
their ability to replicate historical precipitation extremes, 2) downscaling of projected 
precipitation extremes for future periods, 3) quantification of methodological and climate model 
uncertainties, and 4) outreach and development of web-based tools to make results accessible to 
potential users. Final project deliverables include: 

 
1) Historical and future 2-, 5-, 10-, 25-, 50-, and 100-year recurrence interval precipitation 

amounts computed for 1-, 2-, 3-, 6-, 12-, 18-, and 24-hour durations 
2) Historical and future intensity-duration-frequency (IDF) curves 
3) An interactive webpage allowing the public to navigate final research products 

 
Data 
 
Observational Data 
 
 The geographical domain for this study consists of 157 NWS Cooperative Observer 
Program (COOP) stations with long-term daily precipitation data in New York and portions of 
adjacent states and Canada (Figure 1). To qualify as long-term, a given station must meet one of 
the following criteria: 1) reported valid precipitation observations for at least 95% of all days 
during the 1961–2010 period, 2) reported valid precipitation observations for at least 85% of all 
days during the 1961–2010 period and is located at least 25 km from the nearest 95% station, or 



 
!

3 

3) reported valid precipitation observations for at least 75% of all days during the 1961–2010 
period and is located at least 25 km from the nearest 85% and 95% stations. The last two criteria 
were necessary to achieve adequate station density. Daily precipitation data at each station were 
obtained from the Applied Climate Information System (ACIS), which is maintained by the 
National Oceanic and Atmospheric Administration (NOAA) Regional Climate Centers (RCCs). 
The primary source of daily climate data for the ACIS database is the Global Historical 
Climatology Network (GHCN). A table containing each station’s COOP ID, name, state, 
latitude, longitude, and elevation is provided in Appendix A. In addition to daily precipitation 
data, this study uses 6-hourly gridded atmospheric data from National Centers for Environmental 
Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis (Kalnay et al. 
1996). The NCEP–NCAR reanalysis data is available at 2.5° × 2.5° horizontal resolution and 17 
vertical pressure levels between 1000-hPa and 10-hPa. 
 

 
Figure 1: Map showing the locations of the 157 NWS COOP stations used in this study. 
 
Model Data 
 
 Historical and future model output were obtained from two sources: 1) the Coordinated 
Regional Climate Downscaling Experiment (CORDEX; Jones et al. 2011), and 2) Phase 5 of the 
Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012). The CORDEX simulations 
consist of regional climate models (RCMs) run at approximately 50-km resolution and driven by 
atmosphere–ocean general circulation models (AOGCMs) from the CMIP5 project. Gridded 
daily precipitation estimates were extracted from four CORDEX model combinations and 25 
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CMIP5 models (Appendix B) for one historical climate scenario and two future climate scenarios 
(RCP4.5 and RCP8.5). The two future climate scenarios refer to different magnitudes (W m−2) of 
net radiative forcing expected by 2100, relative to pre-industrial conditions. In addition to daily 
precipitation output, 6-hourly gridded atmospheric data were extracted from 20 CMIP5 models 
for comparison with the 6-hourly NCEP–NCAR reanalysis data.  
 
Historical Precipitation Extremes 
 
Partial Duration Series 
 
 In order to compute historical recurrence interval precipitation amounts, it was necessary 
to construct extreme precipitation distributions at each station. Following the method of Wilks 
and Cember (1993), partial duration series (PDS) of the n largest independent daily precipitation 
events were obtained for each station during the 1970–1999 period. Here, n is the largest integer 
not exceeding the number of days with valid precipitation observations divided by 365.25, and 
thus approximates the number of years of valid data at each station. To be considered 
independent, any two chronologically successive PDS events must be separated by at least seven 
calendar days. PDS were chosen to represent extreme precipitation events because they are 
commonly used to calculate recurrence interval precipitation amounts for engineering design 
purposes. While other studies have relied on annual maximum series (AMS) to calculate 
recurrence interval precipitation amounts, PDS are preferable because two or more of a station’s 
largest daily precipitation events may occur during the same calendar year. By definition, AMS 
consist only of the single largest daily precipitation event from each year, and thus may exclude 
additional large precipitation events. 
 
Extreme Value Fitting 
 
 After PDS were constructed for each station, precipitation amounts corresponding to 2-, 
5-, 10-, 25-, 50-, and 100-year return periods were computed using two statistical fitting 
methods. The first method, hereafter referred to as the Beta-P method, employs the Levenberg-
Marquardt method (Press et al. 1986) of maximum likelihood estimation to fit the Beta-P 
distribution (Mielke and Johnson 1974) to each station’s PDS. Wilks (1993) examined several 
candidate probability distributions for estimating precipitation extremes and concluded that the 
Beta-P distribution best captured the extreme right tail of precipitation events in the northeastern 
U.S. The second method, hereafter referred to as the L-moments approach, first groups stations 
together based on similarities in their extreme precipitation distributions, and then applies L-
moments regional frequency analysis (Hosking and Wallis 1997) to estimate precipitation 
extremes at individual stations in each group. Station groups were determined by performing a 
two-sample Kolmogorov–Smirnov (K–S) test on the PDS cumulative distribution functions 
(CDFs) at different pairs of stations (DeGaetano 1998). Finally, a generalized extreme value 
(GEV) distribution was fit to each station’s PDS, with regionally averaged shape and scale 
parameters specified for all stations in a given group. The NWS is currently using L-moments 
regional frequency analysis to create a revised precipitation-frequency atlas (i.e., NOAA Atlas 
14) for the entire United States (Perica et al. 2013). As Figure 2 illustrates, the Beta-P and L-
moments approaches yield very similar values at shorter return periods. At longer return periods, 
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the two fitting methods may yield large differences, with the Beta-P values often exceeding the 
L-moments values. 
 

 
Figure 2: Daily 5-year (red) and 100-year (blue) recurrence interval precipitation amounts 
computed for the 1970–1999 period at all 157 COOP stations. 
 
Confidence Intervals 
 
 One important caveat that must be considered when computing recurrence interval 
precipitation amounts is the discrepancy between the return period and the length of the data 
record. For example, this study estimates precipitation amounts corresponding to 100-year return 
periods, but uses data from significantly shorter 30-year periods. Therefore, computation of the 
100-year recurrence interval precipitation amounts requires extrapolation beyond the length of 
the data record, and thus introduces a greater degree of uncertainty. One way to account for the 
uncertainty in recurrence interval precipitation amounts is to introduce confidence intervals, or 
bounds which represent the range of statistically likely values based on a given number of 
samples. For the purpose of this study, 90% confidence intervals for all recurrence interval 
precipitation amounts were estimated by randomly selecting (with replacement) n precipitation 
amounts from each station’s PDS 1000 times. After computing the Beta-P and L-moments 
recurrence interval precipitation amounts for each of these 1000 trials, the 5th and 95th percentile 
values were chosen to represent to lower and upper confidence interval bounds, respectively. 
One noteworthy finding from the confidence interval calculations is that the confidence intervals 
for the Beta-P precipitation extremes are considerably larger than the confidence intervals for the 
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L-moments precipitation extremes at longer return periods. This finding suggests that the 
parameters of the Beta-P distribution are very sensitive to changes in the PDS sample. 
  
Intensity Duration Frequency Curves 
 
 Once the daily recurrence interval precipitation amounts were obtained for each station, it 
was possible to develop intensity–duration–frequency (IDF) curves. By definition, an IDF curve 
conveys the relationship between precipitation intensity and duration for a specified return 
period. Water resources engineering heavily relies upon IDF curves to prevent or mitigate 
flooding associated with extreme precipitation. For the purpose of this study, 1-, 2-, 3-, 6-, 12-, 
18, and 24-hour durations were used to construct IDF curves for 2-, 5-, 10-, 25-, 50-, and 100-
year return periods. Sub-daily recurrence interval precipitation amounts were estimated by 
applying empirical adjustment factors to the daily recurrence interval precipitation amounts 
(McKay and Wilks 1995). After sub-daily recurrence interval precipitation amounts were 
calculated for each return period, a log-log regression was fit to the intensity–duration 
relationship in order to create smoothed IDF curves and interpolate recurrence interval 
precipitation amounts at intermediate durations. IDF curves were also generated for the lower 
and upper confidence interval bounds of each station’s recurrence interval precipitation amounts. 
Figure 3 shows sample Beta-P and L-moments IDF curves corresponding to a 100-year return 
period at Albany, NY. 
 

 
Figure 3: Historical IDF curves for the 100-year return period at Albany, NY. The solid (dashed) 
black line and red (blue) shaded region denote the Beta-P (L-moments) values and corresponding 
90% confidence intervals. 
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Comparison with NOAA Atlas 14 
 
 Historical precipitation extremes estimated from the L-moments approach were 
compared to those given by NOAA Atlas 14 at the 98 New York stations. This supplemental 
analysis was motivated by the fact that many recent statewide and local impact studies have 
chosen to adopt the NOAA Atlas 14 precipitation thresholds as the standard historical reference 
values. Although NOAA Atlas 14 also employs L-moments regional frequency analysis to 
compute return period precipitation amounts, there are two key differences between NOAA 
Atlas 14 and the NRCC methodology. First, NOAA Atlas 14 uses the entire precipitation data 
record available at each station, whereas the NRCC approach specifies a 30-year historical 
period (1970–1999) for all stations. Second, NOAA Atlas 14 carries out the regionalization 
procedure on a station-by-station basis (i.e., the regions are defined with respect to each station), 
whereas the NRCC approach finds homogeneous regions and specifies regionally averaged 
shape and scale parameters for all stations in the same region. Thus, it was necessary to evaluate 
differences between the NRCC extreme precipitation estimates and the NOAA Atlas 14 extreme 
precipitation estimates. Figure 4 illustrates the bias (defined as the ratio between the NRCC and 
NOAA Atlas 14 values) in 2-, 5-, 10-, 25-, 50-, and 100-year return period precipitation amounts 
for a 24-hour event duration. In general, the differences between the NRCC values and the 
NOAA Atlas 14 values are quite small. The median station bias varies between 0.96 and 1.05, 
and the percent difference between NRCC and NOAA Atlas 14 values is consistently less than 
10% for at least 50% of the 98 New York stations. Furthermore, all NRCC values fell within the 
confidence interval bounds of the NOAA Atlas 14 values. 
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Figure 4: Boxplots showing bias in return period precipitation amounts estimated from the 
NRCC regionalized L-moments approach (with respect to the NOAA Atlas 14 values). Each 
boxplot consists of 98 unique station values. 
 
Downscaling Procedures 
 
 Recent studies have used GCM projections to predict future changes in high-impact 
weather events such as extreme precipitation. While such impact studies are often conducted for 
point locations or fine-scale grids within a limited geographical domain, GCMs typically 
simulate atmospheric variables at horizontal resolutions of 100 km or greater (Wilby and Wigley 
1997; Wilby et al. 2004). Unfortunately, these spatial resolutions are too coarse to adequately 
resolve certain orographic features and atmospheric processes that influence precipitation 
(Benestad 2010; Eden and Widmann 2014). The discrepancy in spatial scales between climate 
model resolution and impact area is addressed through the process of downscaling. In climate 
science, downscaling refers to any technique by which local-scale climate information is derived 
from coarse-scale model output or reanalysis data. Downscaling methods are generally grouped 
into two broad categories: statistical and dynamical. Statistical downscaling utilizes empirical 
relationships between large-scale atmospheric variables (predictors) and local surface variables 
(predictands) to predict local weather conditions or events. Dynamical downscaling involves 
running a nested high-resolution model (usually an RCM) with boundary conditions specified by 
a coarse-scale AOGCM. For the purpose of this study, three different downscaling methods were 
used to estimate future daily precipitation extremes at each station. A detailed methodology for 
each downscaling method is explained below. 
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Dynamical Downscaling 
 
 The first method employs quantile–quantile mapping (Panofsky and Brier 1968) to bias 
correct areally adjusted daily precipitation extremes from the dynamically downscaled CORDEX 
simulations. Daily precipitation estimates at each station were obtained by calculating the 
distance-weighted averages of simulated daily precipitation totals over the nearest four grid cells. 
Next, PDS of the largest daily precipitation estimates at each station were constructed for one 
historical period (1970–1999) and three future periods (2010–2039, 2040–2069, and 2070–
2099), and the Beta-P and L-moments approaches were used to compute the corresponding 
recurrence interval precipitation amounts. Because the simulated recurrence interval precipitation 
amounts were derived from daily precipitation totals averaged over 50-km grid cells, areal 
reduction factors (ARFs) were necessary to convert gridded precipitation to point values of 
precipitation. ARFs for all return periods were estimated according to Equation (1), where t is 
the precipitation duration (h), A is the grid area (units of 1000 km2), and a, b, and c are 
empirically derived coefficients based on 24-hour precipitation durations (Allen and DeGaetano 
2005). Model biases were determined by computing the ratios between the ARF-adjusted 
recurrence interval precipitation amounts and the observed recurrence interval precipitation 
amounts during the historical period. Assuming that model biases would remain constant with 
time, the inverses of the individual bias values were taken as factors needed to bias correct the 
projected future recurrence interval precipitation amounts. Final future downscaled precipitation 
extremes were estimated by applying these bias correction factors to the ARF-adjusted future 
recurrence interval precipitation amounts. 
 
ARF = 1 - exp atb  + exp atb - cA  (1) 

Delta Method 
 
 The second method, a variation of the delta method, computes differences in simulated 
precipitation extremes between AOGCM future and historical periods, and simply applies these 
differences toward observed precipitation extremes. As in the previous method, daily 
precipitation estimates at each station were obtained by calculating the distance-weighted 
averages of simulated daily precipitation totals over the nearest four grid cells. Next, PDS of the 
largest daily precipitation estimates at each station were constructed for the historical and future 
periods, and the Beta-P and L-moments approaches were used to compute the corresponding 
recurrence interval precipitation amounts. Unlike the previous method, ARFs were not used to 
convert areally averaged precipitation to point values of precipitation due to the coarse resolution 
of the AOGCM output. Instead, future downscaled recurrence interval precipitation amounts 
were estimated by calculating the percent changes in simulated precipitation extremes between 
the historical and future periods, and applying these percent change factors to observed 
recurrence interval precipitation amounts. In order to test the sensitivity of percent change factors 
to model resolution, an “upscaling” experiment was conducted using output from the CORDEX 
simulations. The original horizontal resolution of the CORDEX output was reduced from 50 km 
to 100 km, 150 km, and 200 km by taking the combined mean of simulated daily precipitation 
totals from neighboring grid cells. In essence, daily precipitation estimates for each 100-km, 150-
km, and 200-km grid cell represented a combination of a 2 × 2, 3 × 3, or 4 × 4 set of 50-km grid 
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cell values, respectively. This upscaling experiment revealed no discernable relationship between 
the magnitude of percent change and grid cell resolution.  
 
Analog Method 
 
 The third method combines quantile–quantile mapping with a unique approach for 
downscaling daily precipitation extremes from historical analogs. Generally speaking, analog 
methods identify historical large-scale weather patterns similar to the large-scale weather pattern 
on a given target day, and then use local weather conditions observed on the historical analog 
day(s) to predict local weather conditions on the target day. The particular analog approach 
employed in this study involves a multi-step procedure in which the occurrence of extreme 
precipitation on a given model day is first predicted based on the observed probability of extreme 
precipitation on that day’s 30 closest historical analog days. Then, if extreme precipitation 
occurred on a randomly selected analog day from this 30-day subset, precipitation observations 
associated with the selected analog day were used to ascribe precipitation amounts to individual 
stations on the corresponding model day. 

Model days and candidate analog days were compared to one another by calculating 
standardized root mean squared error (RMSE) values for three predictor variables over the 20°N, 
105°W – 55°N, 50°W bounding box. The three predictor variables – 850-hPa relative vorticity, 
total precipitable water (TPW), and vertically integrated water vapor transport (IVT) – were 
chosen to represent synoptic-dynamic processes and thermodynamic environments commonly 
associated with heavy precipitation and flash flooding in the United States (Maddox et al. 1979; 
Heideman and Fritsch 1988; Winkler 1988; Konrad 1997; Kunkel et al. 2012; Gao et al. 2014). 
Predictor fields on the candidate analog days were derived from 6-hourly NCEP–NCAR 
reanalysis, whereas predictor fields on the model days were derived from 6-hourly CMIP5 model 
output. Before computing the predictor variables, the raw CMIP5 data were horizontally re-
gridded and vertically interpolated to match the horizontal and vertical resolution of NCEP–
NCAR reanalysis. The RMSE calculation for a model day–candidate analog day pair is given by 
Equation (2), where Pik (Pjk) represents the value of predictor “P” on model day xi (analog day 
xj), at grid point “k”, and N is the total number of grid points. Squared error values at a given 
grid point “k” were adjusted by a weighting factor (Wk) dependent on that grid point’s proximity 
to the study domain (Figure 5). Standardization of RMSE values was achieved by comparing the 
actual RMSE values with reference populations of RMSE from 1,000,000 randomly sampled 
pairs of days, and locating the centiles of the reference RMSE populations nearest the actual 
RMSE values. For a given model day, the 30 closest historical analogs thus represent the 
candidate analog days with the 30 smallest standardized RMSE averaged across all three 
predictor variables. 

 

RMSEP(xi,xj) = 
Pik – Pjk

2
·Wk

 N
 k=1

Wk
 N
 k=1

! (2) 
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Figure 5: Map illustrating the weighting factors for each reanalysis grid point. 

 
After finding a given model day’s 30 closest historical analogs, one of these analog days 

was randomly selected based on each analog day’s relative degree of similarity to the model day. 
In order to translate the analog pattern to station precipitation, the 157 COOP stations were 
partitioned into distinct clusters based on how regularly different pairs of stations received 
extreme precipitation from the same meteorological event during the 1961–2010 period. For 
each unique pair of stations, the fraction of non-concurrent PDS events [i.e., the fraction of PDS 
events at Station A that did not occur on the same day, the previous day, or the next day at 
Station B (and vice versa)] during the 1961–2010 period was obtained as a measure of 
dissimilarity between the two stations. These dissimilarity measures were used to construct a 157 
× 157 distance matrix, and Ward’s method of hierarchical clustering (Ward 1963) was applied to 
this distance matrix to identify distinct station groups. The resulting station clusters (Figure 6) 
thus represent the spatiotemporal variability in extreme precipitation across the study domain. 

Next, it was determined whether or not extreme precipitation occurred at any stations in 
each cluster on the selected analog day. If only one station recorded a PDS event on the selected 
analog day, the previous day, or the next day, the corresponding daily precipitation amount was 
randomly assigned to one station in the cluster. The probability of assigning this precipitation 
amount to a particular station was quantified as the percentage of cluster-specific single-station 
events occurring at that station during the 1961–2010 period. If multiple stations recorded a PDS 
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event on the selected analog day, the previous day, or the next day, each station’s maximum 
daily precipitation observation over the 3-day period was extracted, and these maximum daily 
precipitation observations were ascribed to all stations in the cluster. The largest daily 
precipitation amount was always assigned separately based the climatological probability that 
each station received the largest daily precipitation amount during a multi-station event. All 
remaining maximum daily precipitation amounts were purely randomly assigned to the 
remaining stations in that cluster. If no stations in the cluster experienced a PDS event on the 
selected analog day, no precipitation amounts were assigned. 

After running through all model days in each 30-year period, new PDS were constructed 
from the precipitation amounts assigned to each station, and the Beta-P and L-moments 
approaches were used to compute the corresponding recurrence interval precipitation amounts. In 
order to minimize the effect of selecting one historical analog for each model day, the process of 
randomly selecting historical analogs, ascribing precipitation amounts, and computing recurrence 
interval precipitation amounts was repeated 1000 times. The median values of the 1000 Beta-P 
and L-moments precipitation threshold populations were chosen to represent the final 
downscaled precipitation threshold estimates. Similar to the dynamically downscaled 
projections, the future downscaled precipitation extremes were adjusted by bias correction 
factors calculated from a comparison of the historical downscaled recurrence interval 
precipitation amounts and the observed recurrence interval precipitation amounts. 
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Figure 6: Map illustrating the five spatiotemporal clusters used to translate the analog pattern to 
station-based precipitation. 
 
Uncertainty Analysis 

 
After obtaining final extreme precipitation projections from each downscaling procedure, 

it was possible to evaluate the variability in future projections amongst the different downscaling 
method–climate model combinations. In total, 49 unique sets of extreme precipitation projections 
were generated for each climate scenario–time period combination at each station. The 49 
individual projections thus form a 49-member ensemble of future recurrence interval 
precipitation amounts for a specified station, climate scenario, and time period. A statistical 
summary of future projections was completed by calculating the ensemble mean recurrence 
interval precipitation amounts, as well as the precipitation threshold values corresponding to the 
10th, 25th, 50th, 75th, and 90th percentiles of the 49 projections. These percentile values may 
alternately be expressed in terms of exceedance/non-exceedance probability. For instance, if the 
10th percentile value of the 100-year storm is 4.00 in, there is a 90% (10%) probability that the 
future magnitude of the 100-year storm will be greater than (less than) 4.00 in.  
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Results 
 
Historical Bias 
 
 Before creating downscaled extreme precipitation projections for the future climate 
scenarios, it was necessary to examine the ability of the various downscaling method–climate 
model combinations to generate realistic estimates of historical precipitation extremes. More 
specifically, model biases were evaluated by comparing the downscaled historical recurrence 
interval precipitation amounts with the observed recurrence interval precipitation amounts during 
the 1970–1999 period. Here, bias is defined as the ratio between the downscaled and observed 
recurrence interval precipitation amounts for a specified return period. Since the delta method 
uses raw CMIP5 daily precipitation output, historical biases were computed for the dynamical 
downscaling and analog downscaling methods only. 
 Figures 7–10 show boxplots of ensemble mean and individual model biases in 5-year and 
100-year recurrence interval precipitation amounts estimated from the dynamical downscaling 
and analog downscaling methods. Overall, both methods yield realistic estimates of 5-year and 
100-year recurrence interval precipitation amounts at most stations. One key difference between 
the two downscaling methods is that, on average, the dynamical downscaling method slightly 
overestimates the 5-year and 100-year recurrence interval precipitation amounts (Figures 7 and 
8), whereas the analog downscaling method slightly underestimates the 5-year and 100-year 
recurrence interval precipitation amounts (Figures 9 and 10). The tendency of the analog 
downscaling method to underestimate precipitation extremes is most pronounced for 100-year 
recurrence interval precipitation amounts computed from the L-moments approach. In both 
downscaling methods, the range of model biases computed from the Beta-P approach increases 
with return period, suggesting that the Beta-P approach is quite sensitive to return period length. 
In other words, small differences in the PDS distribution may yield comparatively large 
differences in recurrence interval precipitation amounts computed from the Beta-P approach at 
longer return periods. Due to concerns over the Beta-P method’s sensitivity to return period 
length, the decision was made to exclude any future extreme precipitation projections computed 
using the Beta-P approach. 
 Figure 11 illustrates the spatial variability of ensemble mean bias in 5-year and 100-year 
recurrence interval precipitation amounts estimated from the two downscaling methods using the 
L-moments approach. The dynamical downscaling method overestimates 5-year and 100-year 
recurrence interval precipitation amounts throughout much of New York State, with the largest 
wet biases concentrated over the western Finger Lakes and the Adirondacks. Notable exceptions 
include the lower and middle Hudson Valley, as well as Long Island and New York City, where 
the dynamical downscaling method consistently underestimates the 5-year and 100-year 
recurrence interval precipitation amounts. By comparison, the analog downscaling method 
underestimates 5-year recurrence interval precipitation amounts throughout much of New York 
State, with exceptions in parts of northeastern New York, western New York, and the St. 
Lawrence Valley. This dry bias is larger and more widespread for the 100-year recurrence 
interval precipitation amounts. 
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Figure 7: Boxplots showing bias in 5-year return period precipitation amounts estimated from the 
dynamical downscaling method. Each boxplot consists of 157 unique station values. 

 

 
Figure 8: As in Figure 7, except for the 100-year return period. 
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Figure 9: Boxplots showing bias in 5-year return period precipitation amounts estimated from the 
analog downscaling method. Each boxplot consists of 157 unique station values. 

 

 
Figure 10: As in Figure 9, except for the 100-year return period. 
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Figure 11: Gridded maps showing the mean bias in 5-year (top) and 100-year (bottom) return 
period precipitation amounts obtained from the dynamical downscaling method (left) and the 
analog method (right) for the 1970–1999 period. Grid cell values were estimated by interpolating 
the 157 station values to 0.5 × 0.5 grid cells. 
 
Future Projections 

 
 Figure 12 shows boxplots of ensemble mean projected changes in 5-year and 100-year 
return period precipitation amounts for the three downscaling methods. In general, the three 
downscaling approaches yield similar results during the early 21st century, with median projected 
increases of 5–10 % across all 157 stations. As time progresses, the magnitude of the projected 
changes in 5-year and 100-year return period precipitation amounts increases, particularly during 
the late 21st century under the RCP8.5 scenario. Moreover, the differences between the three 
downscaling methods become progressively larger. By the late 21st century, the dynamical 
downscaling method consistently yields the greatest increases in return period precipitation 
amounts, whereas the analog method generally yields the smallest increases. These differences 
are especially pronounced under the RCP8.5 scenario, with the analog method (dynamical 
downscaling method) indicating a 10–15% (25–35%) increase in the magnitude of the 100-year 
storm. Lastly, the length of the boxplots suggests that the variability in projected changes among 
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the 157 stations is substantially larger for the dynamical downscaling method than for the other 
two downscaling methods. 
 Gridded maps illustrating the spatial differences in ensemble mean projected changes in 
the 100-year return storm between the three downscaling methods are shown in Figure 13. By 
the late 21st century, all three downscaling methods yield statewide increases in the intensity of 
the 100-year storm. The magnitude of projected changes varies by downscaling method, climate 
forcing scenario, and location. Consistent with Figure 11, these maps indicate that the dynamical 
downscaling method (analog method) predicts the largest (smallest) increases in the intensity of 
the 100-year storm, and the projected changes are consistently larger under the RCP8.5 scenario 
than the RCP4.5 scenario. In terms of spatial variability, the delta method (analog method) 
predicts the largest (smallest) changes over southeastern New York and the smallest (largest) 
changes across sections of northern, western, and central New York. The spatial pattern of 
changes predicted by the dynamical downscaling method is less consistent and exhibits much 
greater spatial variability. While this result is likely an artifact of the very limited number of 
CORDEX simulations available, the higher resolution of the CORDEX simulations may also be 
partly responsible for the relatively large station-to-station variability. 
 Figure 14 illustrates the downscaling method–climate model uncertainty in projected 
changes in the 100-year storm. Here, the 10th (90th) percentile refers to the 10th (90th) percentile 
of the 49 unique downscaling method–climate model combinations. As Figure 13 suggests, the 
range of projected changes by the late 21st century is quite large. For instance, under the RCP4.5 
scenario, the 10th (90th) percentile change in the 100-year storm ranges from -10% to +5% (+20% 
to 40%) statewide. Under the RCP8.5 scenario, the 10th (90th) percentile change in the 100-year 
storm ranges from -5% to +10% (+35% to +55%). By comparison, the mean projected changes 
in the 100-year storm under the RCP4.5 and RCP8.5 scenarios are on the order of +10–15% and 
+15–25%, respectively. Given the high degree of uncertainty in projected changes, it may be 
prudent to use a certain percentile value to assess flood vulnerability and risk of hydrologic 
failure rather than simply rely on the ensemble mean. 
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Figure 12: Boxplots illustrating mean percent changes in 5-year and 100-year return period 
precipitation amounts obtained from the dynamical downscaling method (green), the delta 
method (red), and the analog method (blue). Each boxplot consists of 157 unique station values. 
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Figure 13: Gridded maps showing the mean percent change in 100-year return period 
precipitation amounts between the 1970–1999 period and the 2070–2099 period for the three 
downscaling methods and two RCP scenarios. Grid cell values were estimated by interpolating 
the 157 station values to 0.5 × 0.5 grid cells. 
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Figure 14: Gridded maps showing the 10th percentile, mean, and 90th percentile percent change in 
100-year return period precipitation amounts between the 1970–1999 period and the 2070–2099 
period for the two RCP scenarios (across all downscaling method–model combinations). Grid 
cell values were estimated by interpolating the 157 station values to 0.5 × 0.5 grid cells. 
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Website Products 
 
Station-Specific IDF Curves 

 
 The first website product is an interactive tool that allows users to compare observed and 
projected IDF curves at a single station. Users must select a station and specify the return period 
(2, 5, 10, 25, 50, or 100 years), emissions scenario (RCP4.5 or RCP8.5), and future time period 
(2010–2039, 2040–2069, or 2070–2099). Additionally, users have the option of substituting the 
NRCC historical IDF curve with an IDF curve derived from the NOAA Atlas 14 precipitation 
estimates. The solid (dashed) black line denotes the future (historical) IDF curve. The red shaded 
region represents the range between the 10th and 90th percentile values of the future downscaled 
precipitation extremes. The blue shaded region represents the 90% confidence interval of the 
observed precipitation extremes. As noted above, the smoothed IDF curves were obtained by 
fitting a log-log regression to the intensity-duration relationship at major intervals of 1, 2, 3, 6, 
12, 18, and 24 hours. The IDF viewer contains a scroll tool that allows users to navigate the IDF 
curves and provides estimated precipitation intensities at 6-minute intervals. A supplementary 
table shows the smoothed intensity values corresponding to 1-, 2-, 3-, 6-, 12-, 18-, and 24-hour 
durations. A sample screenshot of this product is shown in Figure 15. 
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Figure 15: Smoothed IDF curves corresponding to the 100-year return period at Albany, NY. 
The solid (dashed) line denotes the historical (future) IDF curve. The blue shaded region 
represents the 90% confidence interval of the historical intensity-duration relationship. The red 
shaded region represents the range between the 10th and 90th percentiles of the future downscaled 
intensity-duration relationship. 
 
Statewide Maps of Projected Changes 

 
 The second website product is a tool that generates statewide maps of projected changes 
in extreme precipitation. These maps are created by interpolating the 157 COOP station values to 
0.5° × 0.5° grid cell values. Users must select the return period, emissions scenario, future time 
period, and ensemble member (10th percentile, mean, or 90th percentile). Additionally, users must 
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specify the type of gridded map to be produced. The first map type shows the projected percent 
change in return period precipitation amounts between the historical period and the specified 
future period. The second map type shows the projected future recurrence interval of the 
precipitation threshold corresponding to the specified historical return period. For instance, if one 
selects a return period of 100 years, an output value of 50 suggests that the historical 100-year 
storm is expected to occur on average once every 50 years in the future. In other words, the 
annual exceedance probability of the historical 100-year storm increases from (0.01 to 0.02). 
Future recurrence intervals were estimated by computing the annual exceedance probabilities of 
the future 2-, 5-, 10-, 25-, 50-, and 100-year precipitation intensities from the historical L-
moments distribution parameters [Equation (3)]. Next, these probabilities were converted to 
expected recurrence intervals [Equation (4)], and a log-log regression was fit between the 
expected recurrence intervals and the 2-, 5-, 10-, 25-, 50-, and 100-year reference return periods. 
The resulting slope and regression parameters were subsequently used to predict the future 
recurrence interval of the historical n-year storm [Equation (5)]. Regression parameters were 
calculated at each station for all six combinations of emissions scenario and future time period. 
 

PHIST = 1 - exp - 1!-!ζ! x i !-!µσ
1 ζ

 (3) 

RHIST = 1 PHIST (4) 

RFUT =  exp βlog RHIST !+!α  (5) 

In Equation (3), x is the future precipitation threshold (converted to a daily value), i is the index 
flood factor, ζ is the shape parameter, µ is the location parameter, and σ is the scale parameter. In 
Equation (5), β is the slope of the log-log regression, and α is the y-intercept of the log-log 
regression. 

 
30-year Exceedance Probabilities 

 
 The last website product is a tool that estimates the historical and future probability of 
exceedance for a given precipitation intensity during a 30-year time period. Users must select a 
station and specify the event duration and total precipitation amount. Unlike annual exceedance 
probability, this value represents the probability that a precipitation event of a specified 
magnitude and duration is exceeded at least once during the entire period. Such information 
helps engineers, urban planners, ecologists, and emergency mangers better understand flood 
vulnerability and assess the risk of hydrologic failure. The probability of exceedance is given by: 
 

Pe = 1 - 1 - 
1
T

n

 (6) 

where T is the recurrence interval and n is the number of years in the period of interest. For 
historical exceedance probabilities, the recurrence interval was computed from Equations (3) and 
(4). For future exceedance probabilities, the recurrence interval was computed from Equations 
(3)–(5). The term in brackets denotes the annual non-exceedance probability, or the probability 
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that a precipitation amount with recurrence interval T is not exceeded in a given year. 
Exceedance probabilities were also estimated for the historical 90% confidence interval bounds, 
as well as the 10th and 90th percentiles of the future downscaled projections. A sample screenshot 
of this product is shown in Figure 16. 

 

 
 

Figure 16: Bar plots showing the historical and future probability of 6-hour precipitation 
exceeding 4 inches at least once during a 30-year period at Albany, NY. The gray shaded region 
denotes the 90% confidence interval for the historical probability. The black error bars denote 
the range in future probabilities between the 10th percentile and 90th percentile downscaled 
projections. 
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Summary 
 
 This project employs three different methods to spatially downscale climate model output 
and create future projections of extreme precipitation throughout New York State. Future 
changes in extreme precipitation will likely have profound implications for various aspects of 
society, including public infrastructure, agriculture, and human health. In order to mitigate the 
potential consequences of such changes, it is imperative that we improve our understanding of 
how the frequency and magnitude of extreme precipitation are expected to change, and 
implement meaningful strategies that will allow society to adapt accordingly. Conclusions from 
this project will ultimately assist local and statewide decision-making with regard to climate 
change adaptation planning in New York State.  
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Appendix A: List of Stations 
 
Station ID Country State Station Name Lat (°N) Lon (°E) Elev (ft) 
060806 US CT BRIDGEPORT SIKORSKY MEM AP 41.16 −73.13 5 
061762 US CT DANBURY 41.40 −73.42 405 
062658 US CT FALLS VILLAGE 41.95 −73.37 550 
063207 US CT GROTON 41.35 −72.04 40 
065445 US CT NORFOLK 2 SW 41.97 −73.22 1340 
066966 US CT ROCKY RIVER DAM 41.58 −73.43 220 
067373 US CT SHEPAUG DAM 41.72 −73.30 840 
199371 US MA WEST OTIS 42.18 −73.22 1295 
281327 US NJ CANISTEAR RSVR 41.11 −74.48 1100 
281335 US NJ CANOE BROOK 40.74 −74.35 180 
281582 US NJ CHARLOTTEBURG RSVR 41.03 −74.42 760 
283516 US NJ GREENWOOD LAKE 41.14 −74.32 470 
286026 US NJ NEWARK INTL AP 40.68 −74.17 7 
286146 US NJ NEW MILFORD 40.96 −74.02 12 
286460 US NJ OAK RIDGE RSVR 41.00 −74.50 880 
287079 US NJ PLAINFIELD 40.60 −74.40 90 
287587 US NJ RINGWOOD 41.09 −74.27 305 
288644 US NJ SUSSEX 2 NW 41.22 −74.66 649 
289832 US NJ WOODCLIFF LAKE 41.01 −74.04 103 
300042 US NY ALBANY AP 42.74 −73.81 312 
300055 US NY ALBION 2 NE 43.27 −78.17 440 
300063 US NY ALCOVE DAM 42.47 −73.93 607 
300085 US NY ALFRED 42.25 −77.76 1706 
300093 US NY ALLEGANY SP 42.10 −78.75 1500 
300183 US NY ANGELICA 42.30 −78.02 1483 
300331 US NY AURORA RSCH FARM 42.73 −76.66 830 
300343 US NY AVON 42.92 −77.76 545 
300443 US NY BATAVIA 43.03 −78.17 913 
300448 US NY BATH 42.35 −77.35 1120 
300608 US NY BENNETTS BRG 43.53 −75.95 660 
300668 US NY BIG MOOSE 3 SE 43.80 −74.87 1760 
300687 US NY BINGHAMTON GREATER AP 42.21 −75.98 1595 
300785 US NY BOONVILLE 4 SSW 43.44 −75.37 1550 
300889 US NY BRIDGEHAMPTON 40.95 −72.31 60 
301012 US NY BUFFALO NIAGARA INTL AP 42.94 −78.74 705 
301152 US NY CANANDAIGUA 3 S 42.85 −77.28 720 
301168 US NY CANDOR 2 SE 42.19 −76.31 920 
301185 US NY CANTON 4 SE 44.58 −75.11 448 
301401 US NY CHAZY 44.88 −73.40 157 
301413 US NY CHEMUNG 42.00 −76.64 822 
301424 US NY CHEPACHET 42.91 −75.11 1320 
301492 US NY CINCINNATUS 42.54 −75.89 1050 
301623 US NY COLDEN 1 N 42.66 −78.68 1025 
301752 US NY COOPERSTOWN 42.72 −74.93 1257 
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301966 US NY DANNEMORA 44.72 −73.72 1340 
301974 US NY DANSVILLE 42.57 −77.72 660 
302036 US NY DELHI 2 SE 42.26 −74.91 1420 
302060 US NY DEPOSIT 42.06 −75.43 1000 
302129 US NY DOBBS FERRY ARDSLEY 41.01 −73.83 200 
302554 US NY ELIZABETHTOWN 44.21 −73.60 611 
302574 US NY ELLENBURG DEPOT 44.91 −73.82 950 
302610 US NY ELMIRA 42.10 −76.84 947 
303025 US NY FRANKLINVILLE 42.33 −78.46 1590 
303033 US NY FREDONIA 42.45 −79.31 760 
303284 US NY GLENS FALLS FARM 43.33 −73.73 504 
303294 US NY GLENS FALLS AP 43.35 −73.62 321 
303346 US NY GOUVERNEUR 3 NW 44.35 −75.51 420 
303773 US NY HEMLOCK 42.77 −77.61 902 
303851 US NY HIGHMARKET 43.58 −75.52 1763 
303983 US NY HORNELL ALMOND DAM 42.35 −77.70 1325 
304025 US NY HUDSON CORRECTIONAL 42.25 −73.80 60 
304102 US NY INDIAN LAKE 2 SW 43.76 −74.27 1660 
304174 US NY ITHACA CORNELL UNIV 42.45 −76.45 960 
304555 US NY LAKE PLACID 2 S 44.25 −73.98 1940 
304731 US NY LIBERTY 1 NE 41.80 −74.74 1580 
304772 US NY LINDLEY 2 N 42.06 −77.15 1040 
304791 US NY LITTLE FALLS CITY RSVR 43.06 −74.87 893 
304808 US NY LITTLE VALLEY 42.25 −78.81 1625 
304836 US NY LOCKE 2 W 42.67 −76.47 1200 
304912 US NY LOWVILLE 43.80 −75.48 860 
305134 US NY MASSENA INTL AP 44.94 −74.85 214 
305310 US NY MIDDLETOWN 2 NW 41.46 −74.45 700 
305334 US NY MILLBROOK 41.86 −73.67 820 
305377 US NY MINEOLA 40.73 −73.62 96 
305426 US NY MOHONK LAKE 41.77 −74.16 1245 
305512 US NY MORRISVILLE 6 SW 42.84 −75.73 1681 
305714 US NY NEWCOMB 43.97 −74.22 1647 
305751 US NY NEW LONDON LOCK 22 43.21 −75.65 400 
305801 US NY NEW YORK CNTRL PK TWR 40.78 −73.97 130 
305803 US NY NEW YORK JFK INTL AP 40.64 −73.76 11 
305811 US NY NEW YORK LAGUARDIA AP 40.78 −73.88 11 
305925 US NY NORTH CREEK 5 SE 43.66 −73.90 890 
306062 US NY NORTHVILLE 43.16 −74.20 790 
306085 US NY NORWICH 42.51 −75.52 989 
306164 US NY OGDENSBURG 4 NE 44.73 −75.44 280 
306196 US NY OLEAN 42.07 −78.45 1420 
306314 US NY OSWEGO EAST 43.46 −76.49 350 
306538 US NY PERU 2 WSW 44.57 −73.57 510 
306623 US NY PISECO 43.46 −74.52 1730 
306745 US NY PORTAGEVILLE 42.57 −78.04 1168 
306774 US NY PORT JERVIS 41.38 −74.68 470 
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307134 US NY RIVERHEAD RSCH FARM 40.96 −72.72 100 
307167 US NY ROCHESTER GTR INTL AP 43.12 −77.68 533 
307205 US NY ROCK HILL 3 SW 41.59 −74.61 1270 
307329 US NY RUSHFORD 42.39 −78.25 1540 
307484 US NY SARATOGA SPRINGS 4 S 43.03 −73.82 310 
307705 US NY SHERBURNE 42.68 −75.51 1095 
307713 US NY SHERMAN 42.16 −79.59 1560 
307780 US NY SKANEATELES 42.95 −76.43 875 
307799 US NY SLIDE MTN 42.02 −74.42 2650 
307842 US NY SODUS CTR 43.21 −77.01 420 
308160 US NY STAMFORD 42.40 −74.63 1779 
308383 US NY SYRACUSE HANCOCK INTL AP 43.11 −76.10 413 
308578 US NY TRENTON FALLS 43.28 −75.16 800 
308600 US NY TROY L&D 42.75 −73.68 24 
308627 US NY TULLY HEIBERG FOREST 42.76 −76.08 1899 
308631 US NY TUPPER LAKE SUNMOUNT 44.23 −74.44 1680 
308944 US NY WANAKENA RNGR SCHOOL 44.15 −74.90 1510 
308987 US NY WATERLOO 42.90 −76.86 452 
309000 US NY WATERTOWN 43.98 −75.88 497 
309005 US NY WATERTOWN INTL AP 43.99 −76.02 318 
309072 US NY WELLSVILLE 42.12 −77.95 1510 
309292 US NY WEST POINT 41.39 −73.96 320 
309389 US NY WHITEHALL 43.56 −73.40 119 
309405 US NY WESTCHESTER CO AP 41.07 −73.71 379 
309425 US NY WHITESVILLE 42.04 −77.77 1740 
309516 US NY WINDHAM 3 E 42.30 −74.20 1680 
360868 US PA BRADFORD 4 SW RSCH 5 41.90 −78.71 1660 
361832 US PA COVINGTON 2 WSW 41.73 −77.12 1745 
362629 US PA EMPORIUM 41.51 −78.23 1040 
362671 US PA EQUINUNK 41.87 −75.27 890 
362682 US PA ERIE INTL AP 42.08 −80.18 730 
363130 US PA GALETON 41.74 −77.65 1345 
363311 US PA GLEN HAZEL 2 NE DAM 41.56 −78.60 1720 
363758 US PA HAWLEY 1 E 41.48 −75.17 890 
364432 US PA KANE 1 NNE 41.68 −78.80 1750 
365606 US PA MEADVILLE 1 S 41.63 −80.17 1065 
365915 US PA MONTROSE 41.85 −75.86 1420 
367029 US PA PLEASANT MT 1 W 41.74 −75.45 1800 
367103 US PA PORT ALLEGANY 41.82 −78.29 1475 
368596 US PA STROUDSBURG 41.01 −75.19 460 
368692 US PA SUSQUEHANNA 41.95 −75.60 910 
368888 US PA TITUSVILLE WTR WORKS 41.63 −79.69 1220 
368905 US PA TOWANDA 1 S 41.75 −76.44 760 
368959 US PA TROY 1 NE 41.79 −76.77 1045 
369042 US PA UNION CITY FILT PLT 41.90 −79.82 1400 
369298 US PA WARREN 41.85 −79.15 1210 
374266 US RI KINGSTON 41.49 −71.54 114 
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431081 US VT BURLINGTON INTL AP 44.47 −73.15 330 
437098 US VT SALISBURY 2 N 43.93 −73.10 420 
CA006100971 CA ON BROCKVILLE PCC 44.60 −75.67 314 
CA006101874 CA ON CORNWALL 45.02 −74.75 209 
CA006103367 CA ON HARTINGTON IHD 44.43 −76.70 524 
CA006104175 CA ON KINGSTON PUMPING STATION 44.23 −76.48 252 
CA006105460 CA ON MORRISBURG 44.92 −75.18 269 
CA006105976 CA ON OTTAWA CDA 45.38 −75.72 259 
CA006106000 CA ON OTTAWA INTL AIRPORT 45.32 −75.67 373 
CA006139445 CA ON WELLAND 43.00 −79.27 574 
CA006153194 CA ON HAMILTON AIRPORT  & 43.17 −79.93 783 
CA007023270 CA QC IBERVILLE 45.33 −73.25 101 
CA007024100 CA QC LAPRAIRIE 45.38 −73.43 98 
CA007025250 CA QC MONTREAL DORVAL INTL AP 45.47 −73.75 98 
CA007025745 CA QC ORMSTOWN 45.12 −74.05 150 
CA007026040 CA QC PHILIPSBURG 45.03 −73.08 173 
CA007026836 CA QC ST ANICET 1 45.12 −74.28 154 
CA007027040 CA QC STE CLOTILDE 45.17 −73.68 170 
CA007028680 CA QC VALLEYFIELD 45.23 −74.10 150 
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Appendix B: List of CMIP5 Models 
 

CMIP5 Model ID Modeling Center/Group Resolution 
ACCESS1.0* CSIRO, Australia 1.25° × 1.875° 
ACCESS1.3* CSIRO, Australia 1.25° × 1.875° 
BCC−CSM1.1 Beijing Climate Center, China 1.125° × 1.125° 
BCC−CSM1.1(m) Beijing Climate Center, China 2.8° × 2.8° 
BNU−ESM Beijing Normal University, China 2.8° × 2.8° 
CCSM4 National Centre for Atmospheric Research, USA 0.9° × 1.25° 
CMCC−CM* Euro−Mediterranean Centre on Climate Change, Italy 0.75° × 0.75° 
CNRM−CM5 National Centre for Meteorological Research, France 1.4° × 1.4° 
CSIRO−Mk3.6.0 CSIRO, Australia 1.875° × 1.875° 
CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 1.875° × 1.875° 
FGOALS−g2* LASG, China 2.8° × 2.8° 
GFDL−CM3 Geophysical Fluid Dynamics Laboratory, USA 2.0° × 2.5° 
GFDL−ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.0° × 2.5° 
GFDL−ESM2M Geophysical Fluid Dynamics Laboratory, USA 2.0° × 2.5° 
GISS−E2−H NASA Goddard Institute for Space Sciences, USA 2.0° × 2.5° 
GISS−E2−R NASA Goddard Institute for Space Sciences, USA 2.0° × 2.5° 
HADGEM2−ES* Met Office Hadley Centre, United Kingdom 1.25° × 1.875° 
IPSL−CM5A−LR Pierre Simon Laplace Institute, France 1.9° × 3.75° 
IPSL−CM5A−MR Pierre Simon Laplace Institute, France 1.25° × 2.5° 
IPSL−CM5B−LR Pierre Simon Laplace Institute, France 1.9° × 3.75° 
MIROC−ESM JAMSTEC/AORI/NIES, Japan 2.8° × 2.8° 
MIROC−ESM−CHEM JAMSTEC/AORI/NIES, Japan 2.8° × 2.8° 
MIROC5 JAMSTEC/AORI/NIES, Japan 1.4° × 1.4° 
MRI−CGCM3 Meteorological Research Institute, Japan 1.125° × 1.125° 
NorESM1−M Norwegian Climate Center, Norway 1.9° × 2.5° 

 
* These models were used for the delta method but not the analog method. 
 
 
 
 
 
 
 
 
 


